ORIGINAL



# Tucson Electric Power Company

P.O. Box 711, Tucson, AZ 85702 One South Church Avenue, Suite 200, Tucson, Arizona 85701

January 31, 2008

Docket Control Arizona Corporation Commission 1200 West Washington Street Phoenix, AZ 85007

Re: **Docket No. E-00000D-07-0376** 

**Docket Control:** 

Enclosed please find an original and thirteen copies of Tucson Electric Power Company's ("TEP") "Ten-Year Plans" pursuant to Title 40, Chapter 2, Article 6.2, "Power Plant and Transmission Line Siting Committee", of the Arizona Revised Statutes. TEP's RMR study, per Staff request, is being provided to Commission Staff directly.

Enclosed is an additional copy of the filing that the Company requests you date-stamp and return in the self-addressed, stamped envelope for our files.

Sincerely,

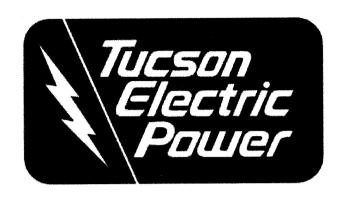
Jessica Bryne

Regulatory Services

Arizona Corporation Commission DOCKETED

3008 1 8 NAL

DOCKETED BY


cc:

Ernest Johnson, ACC

Prem Bahl, ACC Ed Beck, TEP

Compliance, ACC (cover letter only)

50TP



# A UniSource Energy Company

# TUCSON ELECTRIC POWER COMPANY TEN YEAR PLAN FOR YEARS 2008-2017

SUBMITTED TO THE
ARIZONA CORPORATION COMMISSION
JANUARY 2008

DOCKET NO:

E-00000D-07-0376

# **CONTENTS**

| INTRODUCTION                                                                                              | 3             |
|-----------------------------------------------------------------------------------------------------------|---------------|
| PLANNED TRANSMISSION FACILITIES DESCRIPTIONS                                                              | 8             |
| EHV FACILITIES                                                                                            |               |
| Interconnection of Westwing – South 345 kV with future Hassyampa – Pinal West 500 kV line via new Pina    | o<br>al West  |
| 500/345 kV Substation500 kV time via new 1 are                                                            |               |
| Pinal South Substation to Tortolita Substation                                                            | 9             |
| Tortolita Substation to Vail Substation (through North Loop and East Loop Substations)                    | 10            |
| Tortolita Substation to Winchester Substation                                                             | 11            |
| Winchester Substation to Vail Substation – 2 <sup>nd</sup> circuit                                        | 12            |
| Vail Substation to South Substation – 2 <sup>nd</sup> circuit                                             |               |
| Springerville Substation to Greenlee Substation - 2 <sup>nd</sup> circuit                                 | 14            |
| Tortolita Substation to South Substation                                                                  |               |
| Westwing Substation to South Substation – 2 <sup>nd</sup> circuit                                         | 16            |
| TEP-Unisource Energy Services 345 kV Interconnection LineSouth Substation to future Gateway Substat       | ion (2 ckts., |
| Gateway Substation to Comision Federal de Electricidad (CFE) (2 ckts.)                                    |               |
| HV FACILITIES                                                                                             | 19            |
| Irvington Substation to East Loop Substation (through 22nd Street Substation)                             | 19            |
| Vail Substation to East Loop Substation (through Houghton Loop Switching Station*, Spanish Trail and R    | oberts        |
| Substations), tapping the Roberts-East Loop line for new Harrison substation                              | 20            |
| East Loop Substation to Northeast Substation (through Snyder Substation)                                  | 21            |
| Loop existing West Ina Substation to Tucson Station line through Del Cerro (formerly Sweetwater) Substa   | ition 22      |
| Loop existing Vail Substation to East Loop Substation line through future Pantano and Los Reales Substat  | ions 23       |
| Extend 138-kV line from Midvale Substation through future Spencer Switchyard to future San Joaquin Sub    | station 24    |
| South Substation to Duval CLEAR Switchyard (formerly Cyprus Sierrita Extension Switchyard) through fu     | ture Canoa    |
| Ranch (formerly Desert Hills) Substation and Green Valley Substation                                      | 25            |
| Rancho Vistoso Substation to future Catalina Substation.                                                  | 26            |
| Loop existing Irvington Station to Vail Substation #2 line through future University of Arizona Tech Park | Substation2   |
| Tortolita Substation – Rillito Substation 138 kV                                                          | 28            |
| Tortolita Substation – North Loop Substation, North Loop Substation – Rancho Vistoso Substation and To    | rtolita –     |
| Rancho Vistoso 138 kV corridor expansion and reconfiguration                                              |               |
| Vail Substation – SS NO27 Substation- Cienega Substation – SS NO20 Substation- Spanish Trail Substatio    | on 138 kV31   |
| New Cienega Substation – Mountain View Substation 138 kV Circuit and Vail Substation – Fort Huachuco      | a Tap for     |
| Mountain View Substation                                                                                  | 33            |
| Northeast – Snyder 138 kV – tap for Craycroft-Barril substation                                           | 34            |
| Irvington – Tucson 138 kV – tap for Kino Substation                                                       | 35            |
| Tortolita Substation – Marana Substation – North Loop Substation 138 kV and Marana Substation – SS N      | O1            |
| Substation -North Loop Substation 138 kV                                                                  | 36            |
| North Loop Substation - Rancho Vistoso Substation 138kV tap for new Naranja Substation                    | <i>38</i>     |
| DeMoss Petrie Substation – Tucson Substation 138 kV                                                       |               |
| Northeast 138 kV Static Var Compensator (SVC)                                                             | 40            |
| North Loop Substation – SS NO4 Substation– DeMoss Petrie Substation 138kV                                 | 4             |
| Midvale Substation – SS NO22 Substation – South Substation 138kV                                          | 42            |
| Irvington Substation - Corona Substation - Swan Southlands Substation - SS NO26 Substation - South Su     | bstation .    |
| 138kV                                                                                                     | 43            |
| La Canada Substation – Orange Grove Substation–Rillito Substation 138kV                                   |               |
| Orange Grove Substation SS NO6 Substation 138kV                                                           | 40            |
| South Substation – Hartt Substation – Green Valley Substation 138kV                                       |               |
| Hartt Substation SS NO29 Substation 138kV                                                                 |               |
| Tucson Substation – Downtown Substation 138kV                                                             | 49            |
| DeMoss Petrie Substation - SS NO14 Substation - Northeast Substation 138kV                                |               |
| Vail Substation—SS NO17 Substation—Irvington Substation 138kV                                             |               |
| A DOMAINY A = STATIC V A R L CIMPENSATOR VOIL LACH STABILITY STUDIES                                      |               |

#### INTRODUCTION

# **EHV Transmission System**

Tucson Electric Power Company (TEP) is a member of the WestConnect Planning Area and the Southwest Area Transmission Planning Group (SWAT). TEP participates in various SWAT subcommittees including: SWAT Central Arizona Transmission EHV, SWAT Central Arizona HV, SWAT Colorado River Transmission, SWAT Arizona-New Mexico, and Southeast Arizona Transmission System (SATS). Each of these subcommittees has been involved in studying various generation and transmission projects to enhance and increase utilization of the existing system. The SATS study includes all or part of Pima, Pinal, Cochise, and Santa Cruz counties and has the largest direct impact on TEP.

TEP is a participant in the Hassayampa – Pinal West 500 kV project, which will be in service in 2008. TEP's Westwing – South 345 kV line will loop in at the new Pinal West 500/345 kV substation.

TEP is a participant in the Pinal West – Pinal South portion of the Pinal West – Southeast Valley 500 kV project. TEP plans to construct a 500 kV line between the proposed Pinal South Switchyard and TEP's Tortolita Substation in the year 2011.

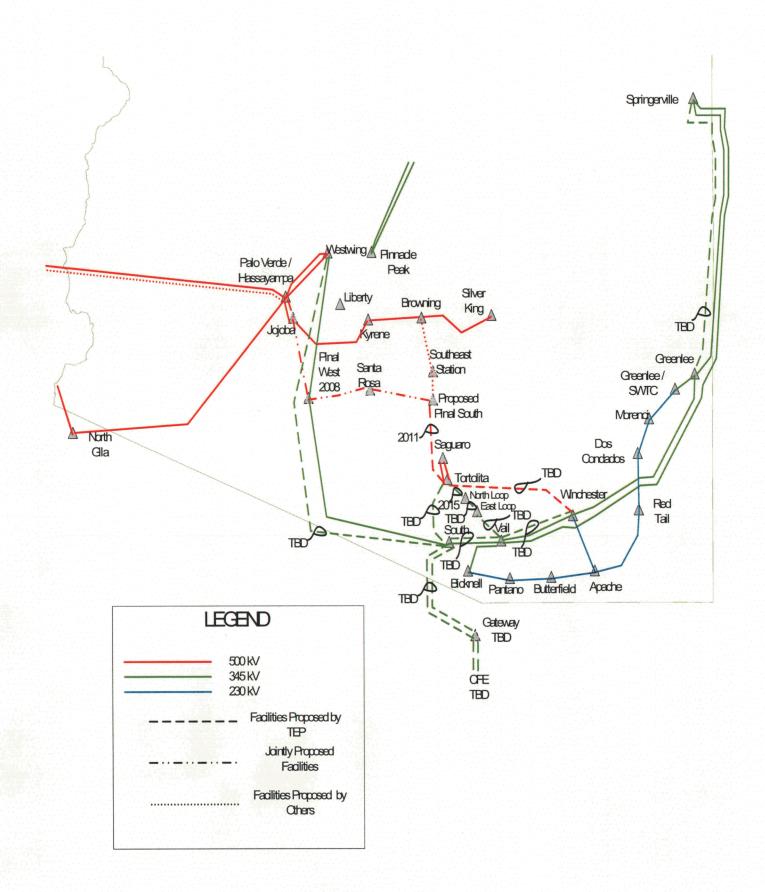
TEP is evaluating various EHV alternatives for load serving capability within TEP's service territory including a possible 345 kV line between TEP's Tortolita Substation and Vail Substation with a loop in at the North Loop and East Loop Substations. Other alternatives are also being considered that will involve additional HV transmission within TEP's service territory.

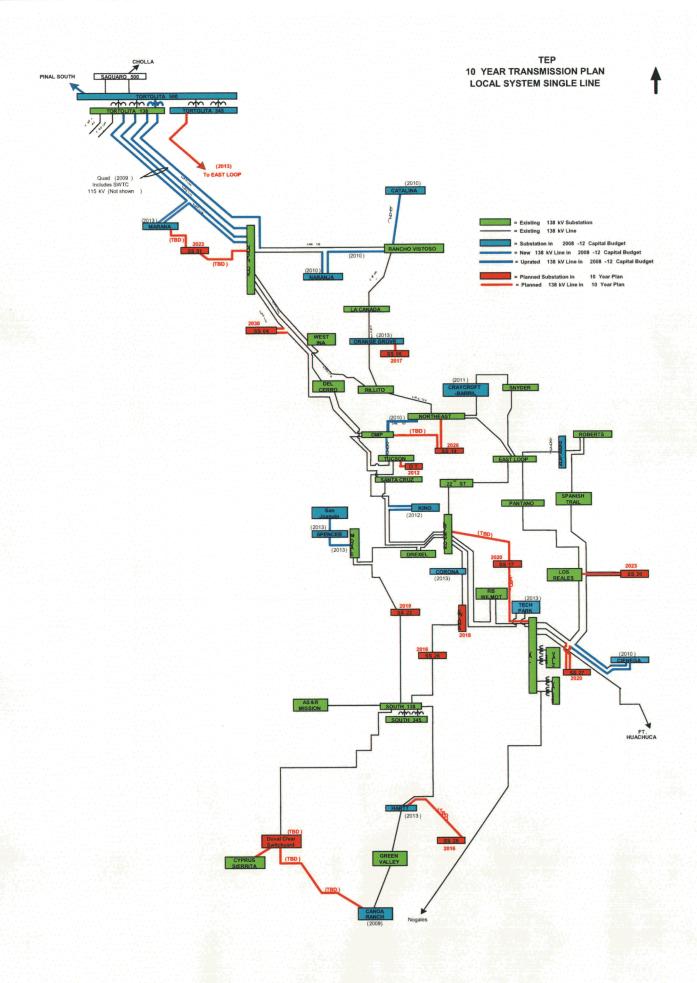
# 138kV Local Transmission System

TEP performs an annual review of its 138kV system performance over a ten-year planning horizon. This results in a schedule for new facilities and upgrades to existing facilities assuring adequate transmission capacity within TEP's service territory as Tucson continues to grow. TEP's 138kV system is improved to accommodate new 138/13.8kV substations, increased line loading, and mitigate localized stability issues.

Load projection analysis looks at distribution system needs and identifies the impact of load growth at each of TEP's distribution substations. This results in proposed new 138/13.8 kV substations and new 138kV transmission lines. Load projection also provides input to the power flow analysis used to identify thermal overloads as Tucson continues to grow.

Power flow analysis looks for thermal overloads during normal and contingency operation based on WECC/NERC Level A, B and C reliability criteria. Contingencies include:


- Loss of major EHV import
- Loss of critical local generation
- Single 138kV circuit outages
- Credible 138kV multiple circuit outages
- Critical circuits initially out of service with system operating acceptably followed by a subsequent outage.


Thermal overloads are addressed with:

- New transmission lines
- Uprating existing lines (increase NESC clearances or larger ampacity wire)
- New generation (when more economical than transmission)
- Other cost effective measures

Transmission facilities are also added at 138kV to increase reliability at substations that are served radially.

TEP is in the process of installing a -75 to +200 MVAr Static Var Ccompensator at its Northeast 138 kV substation scheduled to be in-service by the summer of 2008.





#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

Interconnection of Westwing – South 345 kV with

future Hassyampa – Pinal West 500 kV line<sup>i</sup> via new Pinal West 500/345 kV Substation

Size

a) Voltage

345-kV

b) Capacity

System dependent

c) Point of Origin

Westwing – South Line

d) Point of Termination

Future Pinal West substation (Sec. 6 T5S R1E)

e) Length

Less than 1 mile

Routing

Adjacent to Westwing - South 345 kV line.

Purpose

To reinforce TEP's EHV system and to provide a higher capacity link for the flow of power from the

Palo Verde area into TEP's service territory.

Date

a) Construction Start

2007

b) In-Service Date

2008

Is Certificate Necessary

Case #124

**Technical Studies** 

Studies completed via CATS, WATS, and Palo

Verde - Southeast Station study groups.

<sup>&#</sup>x27;A joint project being jointly developed with SRP as project manager

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

Pinal South Substation to Tortolita Substation

Size

a) Voltage

500-kV

b) Capacity

System dependent

c) Point of Origin

Future Pinal South substation

d) Point of Termination

Tortolita Substation (Sec. 14 T10S R10E)

e) Length

Approximately 30 miles

Routing

Unknown

Purpose

To reinforce TEP's EHV system and to provide a higher capacity link for the flow of power from the

Palo Verde area into TEP's northern service

territory.

Date

a) Construction Start

2010

b) In-Service Date

2011

Is Certificate Necessary

Yes

**Technical Studies** 

Studies in progress via SWAT and internal TEP

#### 10 YEAR PLAN

# TRANSMISSION FACILITIES

Line Designation Tortolita Substation to Vail Substation (through

North Loop and East Loop Substations)

Size

a) Voltage 345-kV

b) Capacity System dependent

c) Point of Origin Tortolita Substation (Sec. 14 T10S R10E)

d) Point of Termination Vail Substation (Sec. 4 T16S R15E)

e) Length Approximately 60 miles

Routing Unknown

Purpose To reinforce TEP's EHV system and to provide a

new tie between TEP's HV and EHV systems.

Date

a) Construction Start 2013

b) In-Service Date Phase 1 – 2014 Tortolita Substation to

North Loop Substation

Phase 2 – North Loop Substation to

Under Review East Loop Substation

Phase 3 – East Loop Substation to Under Review Vail Substation

Chack hevel van Substantin

Is Certificate Necessary Yes

Technical Studies Studies in progress via SWAT and internal TEP

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

Tortolita Substation to Winchester Substation

Size

a) Voltage

500-kV

b) Capacity

System dependent

c) Point of Origin

Tortolita Substation (Sec. 14 T10S R10E)

d) Point of Termination

Winchester Substation

e) Length

Approximately 80 miles

Routing

As described in Siting Case No. 23

Purpose

To reinforce TEP's EHV system and to provide a higher capacity link for the flow of power from the Palo Verde area into TEP's eastern transmission

system.

Date

a) Construction Start

**Under Review** 

b) In-Service Date

**Under Review** 

Is Certificate Necessary

Case No. 23

**Technical Studies** 

Studies in progress via SWAT and internal TEP

#### 10 YEAR PLAN

# TRANSMISSION FACILITIES

Line Designation

Winchester Substation to Vail Substation - 2nd

circuit

Size

a) Voltage

345-kV

b) Capacity

System dependent

c) Point of Origin

Winchester Substation

d) Point of Termination

Vail Substation (Sec. 4 T16S R15E)

e) Length

Approximately 40 miles

Routing

Parallel to existing Winchester - Vail Line

Purpose

To reinforce TEP's EHV system and to provide additional transmission capacity from the future

Winchester Station into Tucson

Date

a) Construction Start

**Under Review** 

b) In-Service Date

**Under Review** 

Is Certificate Necessary

Yes

**Technical Studies** 

Studies in progress via SWAT and internal TEP  $\,$ 

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

Vail Substation to South Substation - 2nd circuit

Size

a) Voltage

345-kV

b) Capacity

System dependent

c) Point of Origin

Vail Substation (Sec. 4 T16S R15E)

d) Point of Termination

South Substation (Sec. 36 T16S R13E)

e) Length

14 miles

Routing

Parallel to existing Vail - South Line

Purpose

To reinforce TEP's EHV system and to provide additional transmission capacity between Vail and

South Substations

Date

a) Construction Start

**Under Review** 

b) In-Service Date

**Under Review** 

Is Certificate Necessary

No

**Technical Studies** 

Studies in progress via SWAT and internal TEP

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

Springerville Substation to Greenlee Substation -

2<sup>nd</sup> circuit

345-kV

Size

a) Voltage

b) Capacity System dependent

c) Point of Origin Springerville Substation (Sec. 34 T11N R30E)

d) Point of Termination Greenlee Substation (Sec. 29 T5S R31E)

e) Length 110 Miles total; 27 Miles in

Arizona.

Routing Parallel to existing Springerville to Greenlee line.

Purpose To deliver power and energy from major TEP

interconnections in the Four Corners and Eastern

Arizona regions.

Date

a) Construction Start Under Review

b) In-Service Date Under Review

Is Certificate Necessary Issued in 1975, 1977, 1982 and

1986

Technical Studies Studies Studies conducted in coordination with

neighboring utilities formed the basis for the design of TEP's original EHV system in the 70's. This project is based on that original work. Detailed studies will be developed in the future upon a

determination of need for this project by TEP.

# 10 YEAR PLAN

## TRANSMISSION FACILITIES

Line Designation

Tortolita Substation to South Substation.

Size

a) Voltage

345-kV

b) Capacity

System dependent

c) Point of Origin

Tortolita Substation (Sec. 23 T10S R10E)

d) Point of Termination

South Substation (Sec. 36 T16S R13E)

e) Length

68 Miles

Routing

From Tortolita Substation south through Avra Valley to existing Westwing-South 345-kV transmission line right-of-way, then parallel to existing Westwing – South line to South Substation.

Purpose

To reinforce TEP's EHV system and to provide a

high capacity link for the flow of power in

Southern Arizona.

Date

a) Construction Start

**Under Review** 

b) In-Service Date

**Under Review** 

Is Certificate Necessary

Case #50

**Technical Studies** 

Being re-evaluated as part of SWAT study

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

Westwing Substation to South Substation - 2nd

circuit

Size

a) Voltage

345-kV

b) Capacity

System dependent

c) Point of Origin

Westwing Substation (Sec. 12 T4N R1W)

d) Point of Termination

South Substation (Sec. 36 T16S R13E)

e) Length

178 Miles

Routing

Parallel to existing Westwing to South line.

Purpose

To deliver power and energy from major TEP interconnections in the Northwest Phoenix region.

Date

a) Construction Start

**Under Review** 

b) In-Service Date

**Under Review** 

Is Certificate Necessary

Case # 15

**Technical Studies** 

Studies conducted in coordination with neighboring utilities formed the basis for the design of TEP's original EHV system in the 70's. This project is based on that original work. Detailed studies will be developed in the future upon a determination of need for this project by TEP.

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation TEP-Unisource Energy Services 345 kV

Interconnection Line--South Substation to future

Gateway Substation (2 ckts.)

Size

a) Voltage 345-kV

b) Capacity 500 MW

c) Point of Origin South Substation (Sec. 36 T16S R13E)

d) Points of Termination Gateway Substation in (Sec. 12 T24S R13E)

e) Length Approximately 60 Miles

Routing Southerly from South Substation, near Sahuarita

Arizona to Nogales area.

Purpose To provide an alternate transmission path to UNS

Electric in Nogales, Arizona pursuant to ACC

Order.

Date

a) Construction Start Dependent upon permitting

b) In-Service Date Dependent upon permitting

Is Certificate Necessary Case #111

Technical Studies See record of Siting Case No. 111

#### 10 YEAR PLAN

# TRANSMISSION FACILITIES

Line Designation

Gateway Substation to Comision Federal de

Electricidad (CFE) (2 ckts.)

Size

a) Voltage

345-kV

b) Capacity

500 MW

c) Point of Origin

Gateway Substation (Sec. 12 T24S R13E)

d) Points of Termination

Arizona-Sonora boundary

(Sec. 13 T24S R13E)

e) Length

Approximately 2 Miles

Routing

Southerly from Gateway Substation, in or near the

Nogales area.

Purpose

To interconnect to the Comision Federal de

Electricidad in Sonora, Mexico.

Date

a) Construction Start

Dependent upon permitting

b) In-Service Date

Dependent upon permitting

Is Certificate Necessary

Case #111

**Technical Studies** 

See record of Siting Case No. 111

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

Irvington Substation to East Loop Substation

(through 22nd Street Substation).

Size

a) Voltage

138-kV

b) Capacity

System dependent

c) Point of Origin

Irvington Substation (Sec. 03 T15S R14E)

d) Point of Termination

East Loop Substation (Sec. 08 T14S R15E)

e) Length

9 Miles

Routing

North and East of Irvington Substation, through

22nd Street Substation, then East and North to East

Loop Substation.

Purpose

To provide additional electric

service to the central area of TEP's service area and

to reinforce the local transmission system.

Date

a) Construction Start

1985

b) In-Service Date

Phase 1 - 1994

(Completed)

Irvington Station to

22nd St. Substation

Phase 2 - 2000

(Completed)

22nd St.

to East Loop

Substation

Phase 3 -

**Under Review** 

2nd Circuit

of Phase I

Is Certificate Necessary

Case #66

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation Vail Substation to East Loop Substation (through

Houghton Loop Switching Station\*, Spanish Trail and Roberts Substations), tapping the Roberts-East

Loop line for new Harrison substation.

Size

a) Voltage 138-kV

b) Capacity System dependent

c) Point of Origin Vail Substation (Sec. 4 T16S R15E)

d) Point of Termination East Loop Substation (Sec. 8 T14S R15E)

e) Length 22 Miles

Routing East and north from Vail Substation along existing

transmission line to Irvington and Houghton Roads, then north along Houghton Road to Speedway Boulevard, then east and north to Roberts Substation and west along Speedway to East Loop

Substation.

Purpose To provide additional electric

service to the eastern portion of TEP's service area

and to reinforce the local transmission system.

Date

a) Construction Start 1976

b) In-Service Date Phase 1 - 1977 Spanish Trail

(Completed) Substation to East Loop and

Vail Substation

Phase 2 - 1983 Roberts Substation

(Completed) and associated 138-kV lines

Phase 3 –

Under Review Third 138-kV line from Vail

to East Loop Substation

Phase 4 - Harrison Substation tap of

Roberts-East Loop 138 kV

line

Is Certificate Necessary Case #8

\*Houghton Loop switching station has been removed from TEP's plans. Name retained for reference only.

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

East Loop Substation to Northeast Substation

(through Snyder Substation)

Size

a) Voltage

138-kV

b) Capacity

System dependent

c) Point of Origin

East Loop Substation Sec. (8 T14S R15E)

d) Point of Termination

Northeast Substation Sec. (28 T13S R14E)

e) Length

13 Miles

Routing

North and west of East Loop Substation, then south

and west to termination point.

Purpose

To provide additional electric service to the

northeastern area of TEP's service area.

Date

a) Construction Start

1985

b) In-Service Date

Phase 1 - 1987

Snyder Substation and

(Completed)

138-kV line to East Loop

Substation

Phase 2 -1999-2005 138-kV line from

Snyder Substation to

Northeast Substation

Interim line in service. Final completion date dependent on Pima County

completion of public improvement project along

Sunrise Dr. Pima County has not set a date for

completion of this work.

Is Certificate Necessary

Case #47

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

Loop existing West Ina Substation to Tucson

Station line through Del Cerro (formerly

Sweetwater) Substation.

Size

a) Voltage

138-kV

b) Capacity

System dependent

c) Point of Origin

Sec. 20 T13S R13E

d) Point of Termination

Sec. 20 T13S R13E

e) Length

Less than one mile

Routing

Loop existing line at Camino del Cerro and Santa

Cruz River; east along Camino del Cerro alignment

into future Del Cerro Substation.

Sec. 17 T13S R13E

Purpose

To provide additional electric

service to the western part of TEP's service area and to reinforce the local distribution system.

Date

a) Construction Start

2007

b) In-Service Date

2008

Is Certificate Necessary

Case #62

# 10 YEAR PLAN

# TRANSMISSION FACILITIES

| Line Designation         | Loop existing Vail Substation to East Loop<br>Substation line through future Pantano and Los<br>Reales Substations.              |  |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|
| Size                     |                                                                                                                                  |  |  |
| a) Voltage               | 138-kV                                                                                                                           |  |  |
| b) Capacity              | System dependent                                                                                                                 |  |  |
| c) Point of Origin       | Phase 1: Sec. 24, T15S R15E                                                                                                      |  |  |
| d) Point of Termination  | Phase 2: Sec. 28, T14S R15E<br>Phase 1: Sec. 24, T15S R15E<br>Phase 2: Sec. 28, T14S R15E                                        |  |  |
| e) Length                | Substations are less than one span from the existing line.                                                                       |  |  |
| Routing                  | Phase 1 Loop existing line east of Houghton<br>Road and south of Valencia Road<br>through Los Reales Substation.                 |  |  |
|                          | Phase 2 Loop existing line east of Pantano Road and south of Golf Links through Pantano Substation.                              |  |  |
| Purpose                  | To provide additional electric service to the eastern part of TEP's service area and to reinforce the local distribution system. |  |  |
| Date                     |                                                                                                                                  |  |  |
| a) Construction Start    | Phase 1 – 2001<br>Phase 2 - 2006                                                                                                 |  |  |
| b) In-Service Date       | Phase 1 – Completed<br>Phase 2 Completed                                                                                         |  |  |
| Is Certificate Necessary | No                                                                                                                               |  |  |

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

Extend 138-kV line from Midvale Substation

through future Spencer Switchyard to future San

Joaquin Substation.

Size

a) Voltage

138-kV

b) Capacity

System dependent

c) Point of Origin

Midvale Substation (Sec. 3 T15S R13E)

d) Point of Termination

Future San Joaquin Substation (physical location to

be determined)

e) Length

Approximately 20 miles

Routing

Reviewing use of common utility corridor and

existing subtransmission

Purpose

To provide additional electrical service to the far

western portion of TEP's service area and to

reinforce the local distribution system.

Date

a) Construction Start

2012

b) In-Service Date

2013

Is Certificate Necessary

Under Review (dependent upon use of federal

and/or Tohono r/w)

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

South Substation to Duval CLEAR Switchyard (formerly Cyprus Sierrita Extension Switchyard) through future Canoa Ranch (formerly Desert Hills) Substation and Green Valley Substation

Size

a) Voltage

138-kV

b) Capacity

System dependent

c) Point of Origin

South Substation (Sec. 36 T16S R13E)

d) Point of Termination

Duval CLEAR Switchyard (formerly Cyprus-

Sierrita Extension Switchyard)

(Sec. 10 T18S R12E)

e) Length

Approximately 24 miles

Routing

Uses existing transmission, sub-transmission, and

overhead distribution route.

Purpose

To provide additional electrical service to southern area of TEP's service area and to reinforce the local

transmission & distribution system.

Date

a) Construction Start

1995

b) In-Service Date

Phase 1 -1997

South 138-kV

(Completed)

line to Green Valley.

Phase 2a -2006

138-kV line from Green

(Completed)

Valley to future Canoa Ranch

Substation site

Phase 2b- 2013

Extend 138-kV line from Canoa Ranch Substation site to future Duval CLEAR Switchyard (formerly Cyprus

Sierrita Extension Switchyard)

Is Certificate Necessary

Case 84

(Extension approved in 2006 ACC Order # 69680,

docketed 6/28/07)

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

Rancho Vistoso Substation to future Catalina

Substation

Size

a) Voltage

138-kV

b) Capacity

System dependent

c) Point of Origin

Rancho Vistoso Substation

(Sec. 36 T11S R13E)

d) Point of Termination

Future Catalina Substation Sec. 18 T11S R14E

e) Length

Approximately 3.5 Miles

Routing

Existing Western Area Power Administration

corridor

Purpose

To provide additional electrical service to far

northern area of TEP's service area and to reinforce

the local distribution system.

Date

a) Construction Start

2009

b) In-Service Date

2010

Is Certificate Necessary

No

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation Loop existing Irvington Station to Vail Substation

#2 line through future University of Arizona Tech

Park Substation.

Size

a) Voltage 138-kV

b) Capacity System dependent

c) Point of Origin Vail – Irvington Corridor

d) Point of Termination Future U of A Tech Park Substation approximately

Sec. 28 T15S R15E

e) Length Approximately 5 miles of double-circuited line

Routing Loop existing Irvington – Vail #2 line into future U

of A Tech Park substation

Purpose To provide additional electric service to the U of A

Tech Park expansion and the southern part of TEP's

service area.

Date

a) Construction Start 2012

b) In-Service Date 2013

Is Certificate Necessary Yes

# 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

Tortolita Substation - Rillito Substation 138 kV

Size

a) Voltage

138-kV

b) Capacity

System dependent

c) Point of Origin

Tortolita 138 kV Substation

d) Point of Termination

Rillito 138 kV Substation

e) Length

24.5 miles

Routing

Unknown

Purpose

Required to fully utilize increased import capability

of additional EHV capacity into Tortolita

Substation (Pinal South - Tortolita).

Date

a) Construction Start

Under review

b) In-Service Date

Under review

Is Certificate Necessary

Yes

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

Tortolita Substation - North Loop Substation, North Loop Substation - Rancho Vistoso

Substation and Tortolita - Rancho Vistoso 138 kV

corridor expansion and reconfiguration

Size

a) Voltage

138-kV

b) Capacity

System dependent

c) Points of Origin

Tortolita 138 kV Substation North Loop 138 kV Substation

d) Points of Termination

North Loop 138 kV Substation Rancho Vistoso 138 kV Substation

e) Length

Tortolita – North Loop: ~14.3 miles North Loop – Rancho Vistoso: ~11.1 miles

f) Routing

Phase 1: Re-configure Tortolita – Rancho

Vistoso line as a third Tortolita - North Loop line

utilizing existing 138 kV stub out of

North Loop. Build new bay at North Loop to accommodate North

Loop - Rancho Vistoso line utilizing

existing 138 kV pole-line

Tangerine Rd.

along

Phase 2: A joint project with

SWTC to construct a new four-

existing

the

circuit pole-line to replace single-circuit structures on Tortolita-North Loop 138 kV

corridor. The four-circuit structures

will accommodate the two existing

Tortolita – North Loop line SWTC's Saguaro – Camino de

Manana 115 kV circuit.

Tortolita-North Loop lines, a fourth

and

Tortolita - North Loop line from

Phase 3: Re-route the third

Phase 1 above to terminate at Rancho Vistoso; ~ 9.0 miles of

existing 46 kV sub-transmission

Rancho Vistoso; ~ 9.0 miles of

along Tangerine Rd.

will be uprated to 138 kV. Tap the

North Loop - Rancho Vistoso line to supply the

new Naranja 138/13.8 kV substation

Purpose

Required for NERC N-1 issues on these parallel

path circuits.

Date

f) Construction Start

2008

g) In-Service Date

Phase 1: 2008

Phase 2: 2009

Phase 3: 2010

Is Certificate Necessary

Phase 1: Yes

Phase 2: Yes

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

| Line | D                  | ecion | nation |
|------|--------------------|-------|--------|
| LINE | $\boldsymbol{\nu}$ | CSIBI | auon   |

Vail Substation – SS NO27 Substation- Cienega Substation – SS NO20 Substation- Spanish Trail Substation 138 kV

#### Size

a) Voltage

138-kV

b) Capacity

System dependent

c) Point of Origin

Vail 138 kV Substation

d) Point of Termination

Spanish Trail 138 kV Substation

e) Length

Phase 1: Vail – Cienega ~12.2miles Phase 2: Vail - SSNO27 ~5.3 miles Phase 3: Cienega – SS NO20 ~14.0 miles

# Routing

Phase 1: Utilize the existing Vail-Fort Huachuca/ Vail-Spanish Trail 138 kV corridor between Vail Substation and seven spans east of Wentworth Rd., then new double-circuit 138 kV northeast ~2.0 miles to proposed Cienega site in T16S R16E Sec 16.

Phase 2: Tap the Vail – Cienega 138 kV line from Phase 1 and extend new double-circuit  $138kV \sim 2.0$  miles south along Houghton Rd. to proposed SS NO27 substation site.

Phase 3: Tap the Cienega – Spanish Trail line from Phase 1 and new circuit out of Los Reales extended via new triple-circuit 138kV east of Los Reales  $\sim 3.0$  miles east along Los Reales Rd to proposed SS NO20 substation site  $\sim 0.75$  miles east of E. Old Spanish Trail.

#### Purpose

Required to serve load at the new Cienega 138/13.8 kV Substation located approximately 7.5 miles east-southeast of the Vail Substation, and the future SS NO27 and SS NO20 138/13.8 kV Substations located approximately 4.0 miles southwest and 6.0 miles north of the Cienega Substation, respectively.

#### Date

Phase 1: Cienega

- a) Construction Start 2008
- b) In-Service Date 2010

Phase 2: SS NO27

- a) Construction Start 2018
- b) In-Service Date 2020

Phase 3: SS NO20

a) Construction Start 2021b) In-Service Date 2023

Is Certificate Necessary

Yes

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation New Cienega Substation – Mountain View

Substation 138 kV Circuit and Vail Substation –

Fort Huachuca Tap for Mountain View Substation

Size

a) Voltage 138-kV

b) Capacity System dependent

c) Point of Origin Cienega 138 kV Substation

(T16S R16E Sec 16)

d) Point of Termination Mountain View 138 kV Substation

(T17S R16E Sec 2)

e) Length 4.7 miles

Routing Extend 138 kV pole-line out of the Cienega

substation east along Dawn Dr. to the Southern Pacific Railroad, then southeast along railroad, then

south to the Mountain View Substation site.

In addition the Mountain View substation will tap

the existing Vail Substation – Ft. Huachuca Substation line to increase reliability to Mountain View with a modest improvement in voltage

regulation to Ft. Huachuca.

Purpose Required to serve load at the new Mountain View

138/13.8 kV Substation approximately 11 miles

south-southeast of the Vail Substation

Date

a) Construction Start TBD

b) In-Service Date TBD

Is Certificate Necessary Yes

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

Northeast - Snyder 138 kV - tap for Craycroft-

Barril substation

Size

a) Voltage

138-kV

b) Capacity

System dependent

c) Point of Origin

Northeast 138 kV Substation

d) Point of Termination

Snyder 138 kV Substation

e) Length

8.0 miles

Routing

Existing Northeast-Snyder Corridor requires 1 span

of wire to drop into station.

Purpose

Required to serve load at the new Craycroft-Barril

138/13.8 kV Substation locate approximately 2.75 miles northeast of the Northeast Substation

Date

a) Construction Start

2010

b) In-Service Date

2011

Is Certificate Necessary

No

# 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

Irvington - Tucson 138 kV - tap for Kino

Substation

Size

a) Voltage

138-kV

b) Capacity

System dependent

c) Point of Origin

Irvington 138 kV Substation

d) Point of Termination

Tucson 138 kV Substation

e) Length

10.9 miles

Routing

Existing Irvington-Tucson Corridor

And  $\sim 3.0$  miles of new double-circuit corridor north of Drexel along Kino Parkway to 36<sup>th</sup> St.

Purpose

Required to serve load at the new Kino 138/13.8 kV

Substation located approximately 5.0 miles northwest of the Irvington Substation

Date

a) Construction Start

2010

b) In-Service Date

2012

Is Certificate Necessary

Yes

### 10 YEAR PLAN

# TRANSMISSION FACILITIES

| Line Designation        | Tortolita Substation - Marana Substation - North<br>Loop Substation 138 kV and Marana Substation -<br>SS NO1 Substation -North Loop Substation 138 kV                                                                                                                                                 |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Size                    |                                                                                                                                                                                                                                                                                                       |
| a) Voltage              | 138-kV                                                                                                                                                                                                                                                                                                |
| b) Capacity             | System dependent                                                                                                                                                                                                                                                                                      |
| c) Point of Origin      | Phase 1: Tortolita 138 kV Substation<br>Phase 2: Marana 138 kV Substation                                                                                                                                                                                                                             |
| d) Point of Termination | North Loop 138 kV Substation                                                                                                                                                                                                                                                                          |
| e) Length               | Phase 1: Tortolita – Marana ~11.0 miles<br>Marana - North Loop ~11.0 miles                                                                                                                                                                                                                            |
|                         | Phase2: Marana – SSNO1 ~6.0 miles<br>SSNO1 – North Loop ~7.5 miles                                                                                                                                                                                                                                    |
| Routing                 | Phase 1: Tap the Tortolita- North Loop corridor at the Trico-Marana Rd. alignment and extend $\sim 4$ miles of double-circuit pole-line west across I-10 to proposed Marana substation site near Sanders Rd.                                                                                          |
|                         | Phase 2: approximately 13.5 miles of new corridor<br>between Marana and Tortolita 138 kV substations<br>located west of I-10                                                                                                                                                                          |
| Purpose                 | Phase 1:Required to serve load at the new Marana 138/13.8 kV Substation located approximately 9.0 miles south-southeast of the Tortolita Substation Phase 2: Required to serve load at the new SS NO1 138/13.8 kV Substation located approximately 6.0 miles south-southeast of the Marana Substation |
| Date                    |                                                                                                                                                                                                                                                                                                       |
| Marana (Phase 1)        | a) Construction Start 2011<br>b) In-Service Date 2013                                                                                                                                                                                                                                                 |

a) Construction Start 2021

SS NO1 (Phase 2)

b) In-Service Date 2023

Is Certificate Necessary

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

North Loop Substation - Rancho Vistoso Substation

138kV tap for new Naranja Substation

Size

a) Voltage

138-kV

b) Capacity

System dependent

c) Point of Origin

North Loop 138 kV Substation

d) Point of Termination

Naranja 138 kV Substation

e) Length

North Loop – Naranja ~7.9 miles Naranja – Ranch Vistoso ~16.6 miles

Routing

Tap the North Loop – Rancho Vistoso line created as part of the Tortolita Substation – North Loop Substation and North Loop Substation – Rancho Vistoso Substation 138 kV corridor expansion and reconfiguration project. Extend ~ 3.0 miles of new double circuit corridor south of Tangergine Rd. along Thornydale Rd. to the substation site

Purpose

Required to serve load at the new Naranja 138/13.8

kV Substation located in the vicinity of Thornydale

Rd. and Lambert Ln.

Date

a) Construction Start

2009

b) In-Service Date

2010

Is Certificate Necessary

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

DeMoss Petrie Substation - Tucson Substation 138

kV

Size

a) Voltage

138-kV

b) Capacity

System dependent

c) Point of Origin

DeMoss Petrie 138 kV Substation

d) Point of Termination

Tucson 138 kV Substation

e) Length

4.5 miles

Routing

existing DeMoss Petrie - Tucson 46 kV corridor

Purpose

Required to eliminate localized voltage instability specific to loss of both the North Loop-West Ina and Irvington-Tucson 138 kV circuits. By 2010, the existing 46 kV tie between DMP and Tucson Stations is unable to support voltage of the Tucson

and West Ina load during this contingency.

Date

a) Construction Start

2009

b) In-Service Date

2010

Is Certificate Necessary

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

**Element Designation** 

Northeast 138 kV Static Var Compensator (SVC)

Size

a) Voltage

138-kV

b) Capacity

-75 to +200 MVAr

c) Location

Northeast 138 kV Substation

Purpose

The SVC is being installed to reduce, and in some cases eliminate, the need for direct load tripping required for stable operation during system contingencies. As a dynamic VAr source, the SVC also reduces the amount of generation that would otherwise have to run to provide these dynamic

**VArs** 

Date

a) Construction Start

2007 - project underway

b) In-Service Date

2008

Is Certificate Necessary

No

Study work used to justify the SVC attached as Appendix A:

Voltage Stability Study of the Tucson Electric Power 138 kV System, 8/19/05

Voltage Stability Study of the Tucson Electric Power 138 kV System Phase II, 10/4/06

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

North Loop Substation - SS NO4 Substation-

DeMoss Petrie Substation 138kV

Size

a) Voltage

138-kV

b) Capacity

System dependent

c) Point of Origin

North Loop 138 kV Substation

d) Point of Termination

DeMoss Petrie Substation

e) Length

North Loop – SS NO4 ~4.5 miles SS NO4 – DeMoss Petrie ~11.3 miles

Routing

Tapping the existing North Loop - West Ina 138kV circuit and extending approximately 2 miles of new double circuit pole-line southwest along Cortaro Farms Rd. to the substation site.

Purpose

Required to serve load at the new SS NO4 138/13.8

kV Substation

Date

a) Construction Start

2028

b) In-Service Date

2030

Is Certificate Necessary

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

Midvale Substation - SS NO22 Substation - South

Substation 138kV

Size

a) Voltage

138-kV

b) Capacity

System dependent

c) Point of Origin

Midvale 138 kV Substation

d) Point of Termination

South 138kV Substation

e) Length

Midvale – SS NO22

~6.0 miles

SS NO22 - South

~7.0 miles

Routing

Tapping the existing Midvale - South 138kV circuit

Purpose

Required to serve load at the new SS NO22

138/13.8 kV Substation

Date

a) Construction Start

2017

b) In-Service Date

2019

Is Certificate Necessary

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

Irvington Substation – Corona Substation – Swan Southlands Substation – SS NO26 Substation – South Substation 138kV

Size

a) Voltage

b) Capacity

c) Point of Origin

d) Point of Termination

e) Length

Routing

Purpose

Date

138-kV

System dependent

Irvington 138 kV Substation

South 138kV Substation

Phase 1: Irvington – Corona ~3.0 miles Corona – South ~13.1 miles

Phase 2: Corona – SS NO26

~7.0miles

SS NO26 - South

~6.1 miles

Phase 3: Corona – Swan Southlands ~13.1 miles Swan South – SS NO26 ~3.0 miles

Tapping the existing Irvington – South 138kV

circuit.

Phase 1: Required to serve load at the new Corona

138/13.8 kV Substation

Phase 2: Required to serve load at the new SS

NO26 138/13.8 kV Substation

Phase 3: Required to serve load at the new Swan

Southlands 138/13.8 kV Substation

Phase 1: Corona

a) Construction Start 2011

b) In-Service Date 2013

Phase 2: SS NO26

a) Construction Start 2014

b) In-Service Date 2016

Phase 3: Swan Southlands

- 43 -

01/28/2008

a) Construction Start 2016 b) In-Service Date 2018

Is Certificate Necessary

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

La Canada Substation - Orange Grove Substation-

Rillito Substation 138kV

Size

a) Voltage

138-kV

b) Capacity

System dependent

c) Point of Origin

La Canada 138 kV Substation

d) Point of Termination

Rillito 138kV Substation

e) Length

La Canada - Orange Grove ~3.8 miles Orange Grove - Rillito ~1.6 miles

, 0

Tapping the existing La Canada - Rillito 138kV

circuit and drop into new station adjacent to the right-of-way at La Canada Blvd. and Orange Grove

Rd.

Purpose

Routing

Required to serve load at the new Orange Grove

138/13.8 kV Substation

Date

a) Construction Start

2011

b) In-Service Date

2013

Is Certificate Necessary

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

Orange Grove Substation-SS NO6 Substation

138kV

Size

a) Voltage

138-kV

b) Capacity

System dependent

c) Point of Origin

Orange Grove 138 kV Substation

d) Point of Termination

SS NO6 138kV Substation

e) Length

Orange Grove - SS NO6 ~3.6 miles

Routing

Radial 138kV circuit from Orange Grove to SS

NO6

Purpose

Required to serve load at the new SS NO6 138/13.8

kV Substation

Date

a) Construction Start

2015

b) In-Service Date

2017

Is Certificate Necessary

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

South Substation - Hartt Substation- Green Valley

Substation 138kV

Size

a) Voltage

138-kV

b) Capacity

System dependent

c) Point of Origin

South 138 kV Substation

d) Point of Termination

Green Valley 138kV Substation

e) Length

South - Hartt

~11.0 miles

Hartt - Green Valley

~3.5 miles

Routing

Tapping the existing South – Green Valley 138kV circuit and drop into new station adjacent to the right-of-way  $\sim 1$  mile south of Old Nogales Hywy

and Duval Mine Rd.

Purpose

Increase load serving and reliability of existing

46/13.8 facilities near this site.

400

Date

a) Construction Start

2011

b) In-Service Date

2013

Is Certificate Necessary

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

Hartt Substation-SS NO29 Substation 138kV

Size

a) Voltage

138-kV

b) Capacity

System dependent

c) Point of Origin

Hartt 138 kV Substation

d) Point of Termination

SS NO29 138kV Substation

e) Length

Hartt - SS NO29 ~7.1 miles

Routing

Radial 138kV circuit from Hartt to SS NO29

Purpose

Required to serve load at the new SS NO29

138/13.8 kV Substation

Date

a) Construction Start

2014

b) In-Service Date

2016

Is Certificate Necessary

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

Tucson Substation-Downtown Substation 138kV

Size

a) Voltage

138-kV

b) Capacity

System dependent

c) Point of Origin

Tucson 138 kV Substation

d) Point of Termination

Downtown 138kV Substation

e) Length

Tucson – Downtown ~1.0 mile

Routing

Radial 138kV circuit from Tucson to Downtown

Purpose

Required to serve load at the new Downtown

138/13.8 kV Substation

Date

a) Construction Start

2010

b) In-Service Date

2012

Is Certificate Necessary

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

DeMoss Petrie Substation - SS NO14 Substation -

Northeast Substation 138kV

Size

a) Voltage

138-kV

b) Capacity

System dependent

c) Point of Origin

DeMoss Petrie 138 kV Substation

d) Point of Termination

Northeast 138kV Substation

e) Length

DeMoss Petrie – SS NO14 ~7.5 miles

SS NO14 - Northeast ~6.0 miles

Routing

New 138kV Construction between DeMoss Petrie and Northeast 138kV substations. SS NO14 is

approximately located south-southeast of

Northeast Substation.

Purpose

Required to serve load at the new SS NO14

138/13.8 kV Substation

Date

a) Construction Start

2024

b) In-Service Date

2026

Is Certificate Necessary

#### 10 YEAR PLAN

#### TRANSMISSION FACILITIES

Line Designation

Vail Substation - SS NO17 Substation - Irvington

Substation 138kV

Size

a) Voltage

138-kV

b) Capacity

System dependent

c) Point of Origin

Vail 138 kV Substation

d) Point of Termination

Irvington 138kV Substation

e) Length

Vail - SS NO17

~6.5 miles

SS NO17 - Irvington

~3.5 miles

Routing

New 138kV Construction between Vail and

Irvington 138kV substations. SS NO17 is located ~2.5 miles north of Robert Bills 138kV substation.

Purpose

Required to serve load at the new SS NO14

138/13.8 kV Substation

Date

a) Construction Start

2018

b) In-Service Date

2020

Is Certificate Necessary

# Appendix A

Static VAr Compensator Voltage Stability
Studies

# **Electric Systems Consulting**

#### **Technical Report**

| ABB inc.                                     |            |           |       |
|----------------------------------------------|------------|-----------|-------|
| Title: Voltage Stability Study of the Tucson | Dept.      | Date      | Pages |
| Electric Power 138 kV System: Final Report   | Consulting | 8/19/2005 | 83    |

Author(s):

Reviewed/Approved by:

Pouvan Pourbeik

Willie Wong

#### **Executive Summary:**

This report describes the results and recommendations of the voltage stability study performed of the Tucson Electric Power (TEP) 138 kV transmission network.

The scenarios studied are for peak load conditions between 2006 to 2010. In addition, some sensitivity analysis was performed for a peak 2015 planning horizon case. *The intent of this study was to focus only on a minimum local generation scenario.* A minimum TEP generation scenario was studied in which all the local generation with the exception of the large steam unit at Irvington power station (Sundt #4) was taken out of service.

Based on both steady-state and time-domain analysis, the following reactive compensation additions are required to ensure stable and reliable system operation under the minimum local TEP generation scenarios, for all possible category B and C outages on the 138 kV network and select critical 345 and 500 kV lines surrounding the TEP area:

- To increase all existing shunt capacitor banks to their maximum size through the addition of extra capacitor cans, by 2006. This means increasing the size of the capacitors at Northeast, Rillito, Tucson and Westina to 50.8 MVAr each, those at South to 50.9 MVAr each and the Northeast RAS capacitor to 52 MVAr
- To install a +200/-75 MVAr SVC at Northeast 138 kV substation that is coordinated with all of the
  mechanically switched capacitor banks at that substation. As such, the existing RAS capacitor at
  Northeast would be switched by the SVC automatically and thus removed from RAS action.
- To incrementally add the following shunt capacitor banks from 2006 to 2015:
  - A 50.8 MVAr capacitor at Northeast in 2006.
  - A 25.4 MVAr capacitor at Roberts, and a 50.8 MVAr capacitor at North Loop and Irvington in 2009.
  - o To increase the size of the Roberts 25.4 MVAr capacitor to 38.1 MVAr in 2015.

Based on a time frame of 2006 to 2010, the SVC size need only be +150/-75 MVAr. To extend the period to 2015, the SVC size should be increased to +200/-75 MVAr. Thus the largest SVC size has been quoted above to cover all the cases studied. This is because it is likely more economical to install a +200/-75 MVAr SVC to begin with rather than to attempt to add to the device in future years, or to install a smaller device first and then a second SVC. Thus, if it is the intend of TEP to be able to maintain a minimum generation scenario up to and including 2015 during peak load times, the recommended solution is a +200/-75 MVAr SVC with gradual addition of the proposed shunt capacitor banks as described above.

The above recommendations are supported by both the results of the steady-state and time-domain simulations. It is shown in the report that in order to maintain reliable system operation under various credible load modeling assumptions, the most robust solution option (with a focus on sizing the dynamic device in order to avoid exorbitant cost) is that provided above. These reactive additions are required to ensure stable system response to all category B outages on the 138 kV and surrounding EHV (345 and 500 kV) lines and transformers. For category C and higher, Remedial Action Scheme (RAS) load shedding is also required.

Both steady-state and time-domain simulations were performed to confirmed that RAS load shedding will be necessary for a number of category C outages. Power flow analysis was performed to confirm that all of the category C outages can be solved by either the proposed additional shunt compensation or the combined

application of this shunt compensation together with an appropriate amount of RAS load shedding and the application of the RAS reactor at South. Although the RAS capacitors at Vail were not used, this is not necessarily an indication that they are not needed for category C and D outages. Here the purpose of the N-2 contingency analysis was simply to illustrate that a solution can be achieved with the combination of RAS (load shedding and reactive devices) and the added reactive compensation. Therefore, we simply found a way to achieve a solution in each case. A more optimal solution may exist with the application of the RAS capacitors. The optimization of the RAS load shedding and reactive devices, for category C and D outages, is outside the scope of this study. Time-domain simulations were also performed for the most onerous category C cases to illustrate that the combination of the additional shunt compensation and RAS load shedding can indeed achieve a stable system response.

Through the N-2 contingency analysis a couple of double contingencies were identified that may warrant further investigation. One of these results in problems in the New Mexico system and the other results in severe voltage depressions in Zone 161. Since both areas are outside the study area being investigated here, no further action was taken for the purposes of this study.

Finally, it should be emphasized again that the above reactive additions are recommended for the purpose of allowing reliable system operation during peak load hours under a TEP minimum local generation scenario. Recently discussions with TEP (since late June, 2005) have identified that the propose minimum generation scenario may not be realizable as early as 2006 due to thermal and other system operating constraints. Thus, reaching the minimum generation scenario may be a more gradual process as other issues are addressed in parallel. As such, the need for the SVC (and possibly its size) as well as the exact timing of phasing in the additional shunt capacitor additions will be impacted by the actual generation dispatch scenarios to be considered. Such determinations require further analysis, and are beyond the scope of this report.

# **Electric Systems Consulting**

#### **Technical Report**

| ABB Inc.                                              |            |           |       |
|-------------------------------------------------------|------------|-----------|-------|
| Title: Voitage Stability Study of the Tucson          | Dept.      | Date .    | Pages |
| Electric Power 138 kV System - Phase II: Final Report | Consulting | 10/4/2006 | 76    |

Author(s):

Reviewed/Approved by:

Pouyan Pourbeik

Willie Wong

#### Executive Summary:

This report describes the results and recommendations of the Phase II voltage stability study performed of the Tucson Electric Power (TEP) 138 kV transmission network.

In 2005, a comprehensive analysis was performed of the TEP system looking at a single generation dispatch scenario – minimum local generation (only Sundt #4 on-line). For this analysis, summer peak load cases were studied for 2006 to 2010. In addition, some sensitivity analysis was performed for a peak 2015 planning horizon case.

Based on detailed steady-state analysis (contingency analysis, PV, QV and OPF) and time-domain analysis, it was found that voltage stability concerns did exist within the TEP system for this minimum generation scenario and that the most robust solution, which would cover all cases through 2015, is a smoothly controlled dynamic reactive device. That is, a +200/-75 MVAr SVC located at Northeast substation and coordinated with four 50 MVAr capacitor banks at the same substation (these shunt banks would be essentially the existing three shunt capacitors at Northeast expanded to 2 x 50.8 MVAr and 52 MVAr, and the addition of a third 50.8 MVAr capacitor). Also, some additional mechanically switched capacitors were recommended at other substations for the purpose of ensuring adequate steady-state voltage profile and stability.

This report describes the time-domain, and some limited steady-state analysis, associated with Phase II of this study. After completion of the Phase I work in 2005, TEP proceeded to perform an extensive and comprehensive analysis of the system focusing on thermal and voltage criteria from a steady-state perspective. All N-1 and N-2 (essentially N-1-1) cases were investigated. Based on this analysis required minimum local generation scenarios (RLG) were established as well as transmission augmentation and discreet shunt compensation additions in order to address thermal and voltage criteria violations. Also, both SVC and non-SVC cases were investigated. In general, the results of the steady-state contingency analysis (performed by TEP) may be briefly summarized as follows:

- For the RLG cases established with the SVC in-service the only non-convergent power flow solutions
  were a few N-1-1 outages that involved the loss of the SVC as one of the outages<sup>1</sup>. This is clearly no
  surprise, since the SVC was established to ensure voltage stability.
- For the RLG cases without the SVC many N-1-1 cases result in divergent power flows, which is indicative of voltage stability concerns.
- The RLG in general tends to be less with the SVC in-service thus establishing an additional economic benefit of requiring less of the expensive local generation to be on-line for the purpose of serving load.

Based on these results, the decision has been made to move forward with the SVC option. However, to ensure that the steady-state results are indicative of the expected dynamic performance of the system some further time-domain simulations was needed; that is the purpose of this report and study.

In this study, the RLG cases established by TEP's steady-state analysis were used as a starting point. Then the

<sup>&</sup>lt;sup>1</sup> Two other outages also resulted in non-convergent power flows. The loss of the Irvington ~ Tucson 138 kV and North Loop — West Ina 138 kV and the loss of Hidalgo – P Young 345 kV and Springerville – Luna 345 kV. As shown in previous work (such as the Phase I study) the former of these outages results in radially back-feeding a pocket of load off of the 46 kV network and the latter is related to problems in a neighboring system. Thus, these two outages were not further investigated in this study.

worst N-1 and N-1-1 outages were identified through steady-state analysis. These critical outages were then simulated in time-domain. The results of this time domain analysis confirms that:

- The SVC is needed to ensure stability and provided for greater voltage regulation and a faster voltage recovery post-disturbance.
- The proposed location and size of the SVC is adequate through 2015; that is, at the Northeast 138 kV substation, coordinated with the MSCs at that substation and having a rating of +200/-75 MVAr (as seen at the 138 kV level).
- The additional proposed shunt capacitor banks (mechanically switched) as included in the TEP RLG
  cases for the study years is needed for steady-state voltage support.